Abstract

This paper presents a fracture mechanics analysis of the base-edge-cracked reverse-tapered (RT) fracture geometry. Motivation for this study was the use of this test geometry in Phase 1 of a recently completed joint-industry-agency project entitled ‘Large-Scale Ice Fracture Experiments’. Underlying the choice of the RT fracture geometry for Phase 1 was the desirability of achieving crack propagation in a controlled and stable manner; such control would allow a number of observations to be made on one testpiece. Reverse tapering greatly improves not only crack growth stability but also crack path stability. The weight function method was used to provide accurate wide-ranging stress intensity factor (SIF), crack face displacement (COD) and crack opening area (COA) expressions for the RT subject to any loading. The required weight function was obtained through a finite element analysis of this geometry subject to a reference load case which determined the associated stress intensity factor and crack opening displacements. The Wu and Carlsson procedure was followed. A key modification to the latter procedure facilitated the attainment of the reference CMOD for all crack lengths, including the zero ligament limit; this was achieved by considering an additional reference solution. This modification is general in nature and could be pursued whenever the reference CMOD is not known analytically. An analytical solution for the crack opening area (COA) was also achieved for the special case of concentrated loading at the crack mouth. This solution can be applied to any geometry where the reference CMOD expression is known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.