Abstract

This paper is concerned with the analysis of the fracture behaviour of a nohomogeneous cantilever beam with two concentric longitudinal cracks. The beam has a circular cross-section with linearly varying radius along the beam length. Moreover, the beam exhibits continuously varying material inhomogeneity in the radial direction. The fracture is analyzed in terms of strain energy release rate assuming nonlinear mechanical behaviour of the material. For this purpose, solutions for the strain energy release rate are derived by considering the energy balance. Two cantilever beam configurations with different lengths of longitudinal cracks are analysed. Moreover, the two cracks are arranged arbitrarily in the radial direction. The longitudinal fracture behaviour of the beam is also analysed by considering the complementary strain energy for verification. The strain energy release rate solutions are used to investigate the influence of varying radius of the cross section along the length of the beam on the longitudinal fracture behaviour. The effects of crack lengths and the location of the two concentric cracks in the radial direction on fracture are also studied. The influences of the loading conditions of the beam and the inhomogeneity of the material in the radial direction on the fracture behaviour are also evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call