Abstract
Quantitative detection of microcracks during fracture process of alumina was carried out by AE source characterization, which enables the quantitative characterization of the size, nucleation velocity and fracture mode, as well as nucleation time and location of individual microcracks. Fracture toughness tests of SENB specimens of two types of alumina with different grain size and purity were carried out in air and water. AE signals emitted from microcrackings were detected by piezoelectric transducers. The combined response function of the specimen and measurement system was experimentally determined using a pencil lead breaking as a simulated source. Then AE source function which describes the nature of microcrack nucleation was determined by the inverse calculation using obtained response function and detected signal. Consequently, it was clarified that the size of microcrack in water was larger than that in air for both alumina and larger microcracks nucleated in water resulted in the degradation of fracture resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Solid Mechanics and Materials Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.