Abstract

Transverse fracture of unidirectional fibre composites was studied in a model glass/epoxy composite in which 1 mm-diameter rods had been used in place of fibres. The fracture surface resulting from transverse cracking in this model system was studied by scanning electron microscopy (SEM). The interaction of the crack with the epoxy matrix resin and the glass rods was the following: Cracks in the resin appeared to have effected a debonding at the glassmatrix interface before reaching the glass. The debonding then propagated along the interface and induced secondary cracks ahead of the primary debonding crack. The confluence of the secondary and primary cracks resulted in sharp ridges being formed on the matrix resin surface, produced by plastic deformation of the rigid epoxy resin. These appeared as a field of parabolic marks. Considering the brittleness of the resin, the amount of plastic deformation indicated by the ridges was astonishing. As the debonding continued around the glass rod, a transverse corrugated texture developed on the resin surface, again produced by plastic deformation. Finally, the cracks reentered the matrix from small patches of polymer adhering especially strongly to the glass surface. The overall fracture energy of transverse cracking of unidirectional fibre composites is suggested to consist, therefore, of the following elements in addition to crack propagation in the matrix resin: (a) the glass-resin debonding before the incoming cracks reach the glass, (b) the initiation of secondary cracks or debonds at the interface, (c) the plastic deformation in generating the ridges on the rigid resin surface, appearing both as the paraboloids and the transverse corrugation, and (d) cracking of the matrix reinitiated at the opposite side of the glass. The use of an enlarged glass reinforcement in this study provided a more direct observation of the properties of transverse crack propagation in composite materials than would have been possible with the small, roughly 10μm fibres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call