Abstract
Using quantitative fractography, the present study clarifies the effect of chemical composition and preliminary plastic deformation on the fracture mode of structural magnesium alloys experienced stress corrosion cracking (SCC). It is demonstrated that the fracture surfaces of alloys ZK60 and AZ31 failed during slow strain rate testing (SSRT) under SCC conditions are commonly featured by (i) the close-to-side surface region of typically brittle fracture initiation composing of intergranular and cleavage facets, which gradually transforms to (ii) the region of transgranular fluted facets optionally followed by the regions of (iii) fluted facets with secondary cracks, (iv) flat dimpled rapture and (v) slant dimpled rapture. Counterintuitively, the preliminary plastic strain introduced in air results in the increase of the fraction of the ductile mode on the fracture surface, elongation and stress at fracture of both alloys SSRT tested in corrosive media. The positive effect of pre-straining can be likely explained from the mechanistic viewpoint due to the increase of the yield stress, which has to be overcome to trigger plastic deformation needed to break the surface protective film. Features of the SCC mechanisms affecting the fracture surface appearance are quantified and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.