Abstract
The aim of this retrieval study was to analyze the fracture features and identify the fracture origin of zirconia-based single crowns that failed during clinical use. Thirty-five fractured single crowns were retrieved from dental practices (bi-layered, n=15; monolithic, n=20). These were analyzed according to fractographic procedures by optical and scanning electron microscopy to identify fracture patterns and fracture origins. The fracture origins were closely examined. The crown margin thickness and axial wall height were measured. Three types of failure modes were observed: total fractures, marginal semilunar fractures, and incisal chippings. Most of the crowns (23) had fracture origins at the crown margin and seven of them had defects in the fracture origin area. The exact fracture origin was not possible to identify due to missing parts in four crowns. The crown wall thickness was 20% thinner and wall height 30% shorter in the fracture origin area compared to the opposite side. The findings in this study show that fractography can reveal fracture origins and fracture modes of both monolithic and bi-layered dental zirconia. The findings indicate that the crown margin on the shortest axial wall is the most common fracture origin site. Crown design factors such as material thickness at the margin, axial wall height and preparation type affects the risk of fracture. It is important to ensure that the crown margins are even and flawless.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.