Abstract

In part 1 of this effort (Ind. Eng. Chem. Res. 2011, 50, 12349−12357), we studied how wood dissolved in ionic liquid (IL) is precipitated into different molecular weight ranges upon the addition of a cosolvent. In this article, we further analyze the chemical compositions of these fractions and elucidate the mechanisms of fractionation. Specifically, we fractionated Norway spruce wood solvated with 1-allyl-3-methylimidazolium chloride ([amim]Cl) and analyzed the resulting fractions by Klason lignin analysis and FT-IR and NMR spectroscopies. We found that separation of the different components can be tuned by the variable dissolution of wood based on particle size, resulting from preparatory milling. It is possible to obtain cellulose-rich material with a relatively low (6.2%) lignin content, from spruce sawdust. This can achieved by extracting the cellulose from the insoluble lignin–carbohydrate complex (LCC) matrix. Extensive milling of wood afforded a soluble LCC matrix, and its precipitation was based ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.