Abstract
We present a constant-pressure molecular dynamics simulation study of the phase behavior of binary (50:50) Gay-Berne liquid crystal mixtures consisting of elongated particles with different lengths (LA>LB) and equal diameters. We focus on systems at dense liquid-state conditions. Considering three mixtures characterized by different values of LA(B) and different length ratios q=LB/LA<1, we find complex fluid-fluid phase behavior resulting from the interplay between nematic, smectic-A-type, or smectic-B-type orientational ordering, on the one hand, and demixing into two phases of different composition (fractionation), on the other hand. The driving "forces" of demixing transitions are the temperature and the length ratio. Indeed, in the system characterized by the largest value of q (q=0.86) orientational order occurs already in mixed states, whereas full fractionation is found at q=0.71. The two resulting states are either of type smectic-B-nematic (intermediate temperatures) or smectic-B-smectic-B (low temperatures). In the intermediate case q=0.80 we observe a stepwise ordering and demixing behavior on cooling the system from high temperatures. Moreover, our results show that the stability range of (partially) nematic structures in mixtures of sufficiently small q can be significantly larger than in the pure counterparts, in qualitative agreement with experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.