Abstract

Brown algae contain a polysaccharide-rich cell wall, mainly composed of alginate and fucoidan which have been extensively studied for their individual structure and bioactivities. Particularly, the cell wall of Cladosiphon okamuranus is rich in fucoidan rather than alginate. However, little is known about its arrangement or interlinking with other polysaccharides such as cellulose in the cell wall. To determine its structure in detail, the cell wall was sequentially fractionated into five fractions: hot water (HW), ammonium oxalate, hemicellulose-I (HC–I), HC-II, and cellulose. Almost 80% of the total cell wall recovered from alcohol insoluble residue in C. okamuranus consisted of HW and HC-I, which mainly contained fucoidan composed of fucose, glucuronic acid, and sulfate in molar ratios of 1.0:0.3:0.9 and 1.0:0.2:0.3, respectively. Methylation analysis revealed that fucoidan in HW and HC-I structurally differed in terms of content of sulfate, and sugar residue which was 1,4-linked xylose and 1,4-linked fucose. Small angle X-ray scattering measurements also showed distinct conformational differences between HW and HC-I. These structural heterogeneities of fucoidan may be related to their localization, and fucoidan in HC-I may be involved in reinforcing cell wall structure by cross-linking to cellulose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call