Abstract

Studies of Fractionated Exposure to Low Doses of Ionizing Radiation (FELDIR) has become of increasing importance to clinical interventions. Its consequences on DNA damage, physical, and mental health have been insufficiently investigated, however. The goal of this study was to determine the effects of FELDIR on the brain using a mouse model. We addressed the levels of DNA damage, global genomic methylation, and DNA methylation machinery in cerebellum, frontal lobe, olfactory bulb and hippocampal tissues, as well as behavioral changes linked to FELDIR exposure. The results reveal increased levels of DNA damage, as reflected by increased occurrence of DNA Strand Breaks (SBs) and dysregulation of stress-response kinase p38. FELDIR also resulted in initial loss of global genomic methylation and altered expression of methyltransferases DNMT1 (down-regulation) and DNMT3a (up-regulation), as well as methyl-binding protein MeCP2 (up-regulation). FELDIR-associated behavioral changes included impaired skilled limb placement on a ladder rung task, increased rearing activity in an open field, and elevated anxiety-like behaviors. The said alterations showed significant dose and tissue specificity. Thus, FELDIR represents a critical impact on DNA integrity and behavioral outcomes that need to be considered in the design of clinical intervention studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.