Abstract

The paper presents differential scanning calorimetry and electron microscopy of the fractionated crystallization and polydispersity of the dispersed PA6 phase in compatibilized LDPE/PA6 75/25 w/w blends. The compatibilizers used were (i) an acrylic acid functionalized polyethylene, Escor 5001 (EAA); (ii) an ethylene–glycidylmethacrylate copolymer, Lotader GMA AX8840 (EGMA); (iii) a polystyrene–poly(ethylene–butylene)–polystyrene triblock copolymer comprising 2 wt.% maleic anhydride grafts, Kraton FG 1901X (SEBS-g-MA). The compatibilizer SEBS-g-MA has the strongest reduction effect upon the size of PA-6 droplets. Its implementation provides the best fractionated crystallization. The fractionated crystallization has not been observed for the blend compatibilized with EGMA. The results show that the degree of compatibilization could be evaluated qualitatively by the progress of the fractionated crystallization. So, the three compatibilizers could be rated according to their effectiveness as follows: SEBS-g-MA > EAA > EGMA. The self-nucleation experiments have demonstrated that the lack of active nuclei in the finely dispersed PA6 droplets is the determining factor for the fractionated crystallization at high supercooling, and not the considered absolute particle size. The measurement of the Vickers microhardness of the compatibilized blends confirms that the compatibilizing activity of SEBS-g-MA and EAA is stronger than that of EGMA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.