Abstract

This study investigates a novel fractional-order nonsingular terminal sliding mode controller via a finite-time disturbance observer for a class of mismatched uncertain nonlinear systems. For this purpose, a finite-time disturbance observer–based fractional-order nonsingular terminal sliding surface is proposed, and the corresponding control law is designed using the Lyapunov stability theory to satisfy the sliding condition in finite time. The proposed fractional-order nonsingular terminal sliding mode control based on a finite-time disturbance observer exhibits better control performance; guarantees finite-time convergence, robust stability of the closed-loop system, and mismatched disturbance rejection; and alleviates the chattering problem. Finally, the effectiveness of the proposed fractional-order robust controller is illustrated via simulation results of both the numerical and application examples which are compared with the fractional-order nonsingular terminal sliding mode controller, sliding mode controller based on a disturbance observer, and integral sliding mode controller methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call