Abstract

In this paper, a fractional-order model of the gas film is proposed for the dynamic characteristics of an air bearing. Based on the dynamic characteristics common between gas film and viscoelastic body, the idea of the fractional-order equivalent modeling of the dynamic characteristics of the gas film is presented to improve the modeling accuracy. Four fractional-order gas film (FOGF) models are introduced based on generalization of traditional viscoelastic models. The analysis of the characteristics of the FOGF models shows that the FOGF model can capture more complex dynamic characteristics and fit the real dynamic data of the gas film better than traditional models. A genetic algorithm particle swarm optimization (GA-PSO) method is used for parameter identification of the proposed models. The experimental results tested on the air bearing motion platform show that the FOGF models are superior in accuracy to the traditional equivalent models for the gas film. In particular, the fractional-order Maxwell gas film (FOMGF) model has the best capture accuracy compared to the other FOGF models and traditional models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.