Abstract

To investigate the creep characteristics of soft clay under true triaxial stress conditions, multistage loading creep tests using TSW-40 true triaxial apparatus were performed. The creep deformation characteristics, creep rate, and long-term strength of soft clay under a true triaxial stress path were studied. The results showed that the creep deformation and creep rate of soft clay increase with increasing major principal stress; the axial deformation is larger than the lateral deformation. The long-term strength and the equation for predicting the starting point of accelerated creep were obtained using the generalized shear stress. A four-element fractional-order creep (FFC) model based on the fractional Burgers creep model was established for soft clay and then extended to three dimensions. The model calculation results based on the parameters obtained using MATLAB’s Curve Fitting Toolbox were in good agreement with the experimental results. The comparison results showed that the 3D FFC model was more accurate at describing the entire creep curve of soft clay than the fractional Burgers model and the Burgers model, particularly regarding the accelerated creep characteristics. In conclusion, the results presented herein are expected to provide the scientific basis for determining soft clay creep instability under true triaxial stress conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call