Abstract

Today, the entire world is witnessing an enormous upsurge in coronavirus pandemic (COVID-19 pandemic). Confronting such acute infectious disease, which has taken multiple victims around the world, requires all specialists in all fields to devote their efforts to seek effective treatment or even control its disseminate. In the light of this aspect, this work proposes two new fractional-order versions for one of the recently extended forms of the SEIR model. These two versions, which are established in view of two fractional-order differential operators, namely, the Caputo and the Caputo–Fabrizio operators, are numerically solved based on the Generalized Euler Method (GEM) that considers Caputo sense, and the Adams–Bashforth Method (ABM) that considers Caputo–Fabrizio sense. Several numerical results reveal the impact of the fractional-order values on the two established disease models, and the continuation of the COVID-19 pandemic outbreak to this moment. In the meantime, some novel results related to the stability analysis and the basic reproductive number are addressed for the proposed fractional-order Caputo COVID-19 model. For declining the total of individuals infected by such pandemic, a new compartment is added to the proposed model, namely the disease prevention compartment that includes the use of face masks, gloves and sterilizers. In view of such modification, it is turned out that the performed addition to the fractional-order Caputo COVID-19 model yields a significant improvement in reducing the risk of COVID-19 spreading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call