Abstract

In this paper, we study a fractional Brusselator reaction–diffusion model with the help of the residual power series transform method. Specific reaction–diffusion chemical processes are modeled by applying the fractional Brusselator reaction–diffusion model. It should be mentioned that many problems in nonlinear science are characterized by fractional differential equations, where an unknown term occurs when a fractional-order derivative is operating on it. The analytic method of this problem is rarely discussed in the literature, despite numerous scholars having researched its application and usefulness. To validate our proposed method’s accuracy, we compare the numerical results of the residual power series transform method and the exact result with different fractional orders. The solution shows that the introduced approach is a good tool for solving linear and nonlinear fractional system differential equations. Finally, we provide two and three-dimensional graphical plots to support the impact of the fractional derivative on the behavior of the achieved profile results to the proposed equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.