Abstract

The vertex arboricity va(G) of a graph G is the minimum number of subsets into which the vertex set V(G) can be partitioned so that each subset induces an acyclic subgraph. The fractional version of vertex arboricity is introduced in this paper. We determine fractional vertex arboricity for several classes of graphs, e.g., complete multipartite graphs, cycles, integer distance graphs, prisms and Peterson graph.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.