Abstract

The fractional translational diffusion of a particle in a double-well potential (excluding inertial effects) is considered. The position correlation function and its spectrum are evaluated using a fractional probability density diffusion equation (based on the diffusion limit of a fractal time random walk). Exact and approximate solutions for the dynamic susceptibility describing the position response to a small external field are obtained. The exact solution is given by matrix continued fractions while the approximate solution relies on the exponential separation of the time scales of the fast "intrawell" and low overbarrier relaxation processes associated with the bistable potential. It is shown that knowledge of the characteristic relaxation times for normal diffusion allows one to predict accurately the anomalous relaxation behavior of the system for all relevant time scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call