Abstract

We present a method for the direct measurement of the fractional thermal load (FTL) in cryogenically cooled laser crystals. The experimental methodology involves characterizing the liquid nitrogen evaporation rate in a dewar containing the laser crystals, allowing for the accurate determination of FTL. The FTL is measured to be 1.7 × quantum defect (QD) for Yb:YLF and 1.5 × QD for Yb:YAG under continuous wave lasing conditions. The measured FTL values are then used to calculate the temperature distribution inside the crystals as a function of pump power, and the simulation results are found to be in very good agreement with the in-situ temperature measurements using contactless optical luminescence thermometry. The method and findings presented in this work hold great potential to benefit laser engineers and scientists working with cryogenic lasers to address and overcome temperature-dependent handicaps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call