Abstract

We deal with a class of equations driven by nonlocal, possibly degenerate, integro-differential operators of differentiability order $$s\in (0,1)$$ and summability growth $$p>1$$ , whose model is the fractional p-Laplacian with measurable coefficients. We state and prove several results for the corresponding weak supersolutions, as comparison principles, a priori bounds, lower semicontinuity, and many others. We then discuss the good definition of (s, p)-superharmonic functions, by also proving some related properties. We finally introduce the nonlocal counterpart of the celebrated Perron method in nonlinear Potential Theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.