Abstract

In the paper, we show a connection between a regular fractional Sturm-Liouville problem with left and right Caputo derivatives of order in the range (1/2, 1) and a 1D space-time fractional diffusion problem in a bounded domain. Both problems include mixed boundary conditions in a finite space interval. We prove that in the case of vanishing mixed boundary conditions, the Sturm-Liouville problem can be rewritten in terms of Riesz derivatives. Then, we apply earlier results on its eigenvalues and eigenfunctions to construct a weak solution of the 1D fractional diffusion equation with variable diffusivity. Adding an assumption on the summability of the eigenvalues’ inverses series, we formulate a theorem on a strong solution of the 1D fractional diffusion problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.