Abstract

Properties of the phase space of the standard maps with memory obtained from the differential equations with the Riemann–Liouville and Caputo derivatives are considered. Properties of the attractors which these fractional dynamical systems demonstrate are different from properties of the regular and chaotic attractors of systems without memory: they exist in the asymptotic sense, different types of trajectories may lead to the same attracting points, trajectories may intersect, and chaotic attractors may overlap. Two maps have significant differences in the types of attractors they demonstrate and convergence of trajectories to the attracting points and trajectories. Still existence of the most remarkable new type of attractors, “cascade of bifurcation type trajectories”, is a common feature of both maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.