Abstract

We propose fractional spin Hall effect (FSHE) by coupling pseudospin states of cold bosonic atoms to optical fields. The present scheme is an extension to interacting bosonic system of the recent work [X.-J. Liu, X. Liu, L. C. Kwek, and C. H. Oh, Phys. Rev. Lett. 98, 026602 (2007) and S.-L. Zhu, H. Fu, C.-J. Wu, S.-C. Zhang, and L.-M. Duan, Phys. Rev. Lett. 97, 240401 (2006)] on optically induced spin Hall effect in noninteracting atomic system. The system has two different types of ground states. The first type of ground state is a 1/3-factor Laughlin function and has the property of chiral-antichiral interchange antisymmetry, while the second type is shown to be a 1/4-factor wave function with chiral-antichiral symmetry. The fractional statistics corresponding to the fractional spin Hall states are studied in detail and are discovered to be different from that corresponding to the fractional quantum Hall (FQH) states. Therefore the present FSHE can be distinguished from FQH regime in the measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call