Abstract

Fractional revival occurs between two vertices in a graph if a continuous-time quantum walk unitarily maps the characteristic vector of one vertex to a superposition of the characteristic vectors of the two vertices. This phenomenon is relevant in quantum information in particular for entanglement generation in spin networks. We study fractional revival in graphs whose adjacency matrices belong to the Bose–Mesner algebra of association schemes. A specific focus is a characterization of balanced fractional revival (which corresponds to maximal entanglement) in graphs that belong to the Hamming scheme. Our proofs exploit the intimate connections between algebraic combinatorics and orthogonal polynomials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.