Abstract

We investigate the structure of gapless edge modes propagating at the boundary of some fractional quantum Hall states. We show how to deduce explicit trial wavefunctions from the knowledge of the effective theory governing the edge modes. In general, quantum Hall states have many edge states. Here, we discuss the case of fractions having only two such modes. The case of spin-polarized and spin-singlet states at filling fraction ν = 2/5 is considered. We give an explicit description of the decoupled charged and neutral modes. Then we discuss the situation involving negative flux acting on the composite fermions. This happens notably for the filling factor ν = 2/3 which supports two counterpropagating modes. Microscopic wavefunctions for spin-polarized and spin-singlet states at this filling factor are given. Finally, we present an analysis of the edge structure of a non-Abelian state involving also negative flux. Counterpropagating modes involve, in all cases, explicit derivative operators diminishing the angular momentum of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.