Abstract
We show that there is an emergent lattice description for the continuous fractional quantum Hall (FQH) systems, with a generalized set of few-body coherent states. In particular, model Hamiltonians of the FQH effect (FQHE) are equivalent to the real-space von Neumann lattice of local projection operators imposed on a continuous system in the thermodynamic limit. It can be analytically derived that tuning local one-body potentials in such lattices amounts to the tuning of individual two- or few-body pseudopotentials. For some cases, we can realize pure few-body pseudopotentials important for stabilizing exotic non-Abelian topological phases. Thus, this new approach can potentially lead to the experimental realization of coveted non-Abelian quantum fluids including the Moore-Read state and the Fibonacci state. The reformulation of the FQHE as a sum of local projections opens up new paths for rigorously proving the incompressibility of microscopic Hamiltonians in the thermodynamic limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.