Abstract

We show that there is an emergent lattice description for the continuous fractional quantum Hall (FQH) systems, with a generalized set of few-body coherent states. In particular, model Hamiltonians of the FQH effect (FQHE) are equivalent to the real-space von Neumann lattice of local projection operators imposed on a continuous system in the thermodynamic limit. It can be analytically derived that tuning local one-body potentials in such lattices amounts to the tuning of individual two- or few-body pseudopotentials. For some cases, we can realize pure few-body pseudopotentials important for stabilizing exotic non-Abelian topological phases. Thus, this new approach can potentially lead to the experimental realization of coveted non-Abelian quantum fluids including the Moore-Read state and the Fibonacci state. The reformulation of the FQHE as a sum of local projections opens up new paths for rigorously proving the incompressibility of microscopic Hamiltonians in the thermodynamic limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call