Abstract

We present the findings for the fractional quantum conductance of holes that is caused by the edge channels in the silicon nanosandwich prepared within frameworks of the Hall geometry. This nanosandwich represents the ultra-narrow p-type silicon quantum well (Si-QW), 2 nm, confined by the δ-barriers heavily doped with boron on the n-type Si (100) surface. The edge channels in the Si-QW plane are revealed by measuring the longitudinal quantum conductance staircase, Gxx, as a function of the voltage applied to the Hall contacts, Vxy, to a maximum of 4e2/h. In addition to the standard plateau, 2e2/h, the variations of the Vxy voltage appear to exhibit the fractional form of the quantum conductance staircase with the plateaus and steps that bring into correlation respectively with the odd and even fractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.