Abstract
Topological quantum pumps are topologically equivalent to the quantum Hall state: In these systems, the charge pumped during each pumping cycle is quantized and coincides with the Chern invariant. However, differently from quantum Hall insulators, quantum pumps can exhibit novel phenomena such as the fractional quantization of the charge transport, as a consequence of their distinctive symmetries in parameter space. Here, we report the analogous fractional quantization of the spin transport in a topological spin pump realized in a one-dimensional lattice via a periodically modulated Zeeman field. In the proposed model, which is a spinfull generalization of the Harper-Hofstadter model, the amount of spin current pumped during well-defined fractions of the pumping cycle is quantized as fractions of the spin Chern number. This fractional quantization of spin is topological, and is a direct consequence of the additional symmetries ensuing from the commensuration of the periodic field with the underlying lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.