Abstract
For a given contractionT in a Banach spaceX and 0 0 anda j >0 and Σ j=1 ∞ a j =1. The operator calculus justifies the notation(I−T) α :=I−T α (e.g., (I−T 1/2)2=I−T). A vectory∈X is called an, α-fractional coboundary for T if there is anx∈X such that(I−T) α x=y, i.e.,y is a coboundary forT α . The fractional Poisson equation forT is the Poisson equation forT α . We show that if(I−T)X is not closed, then(I−T) α X strictly contains(I−T)X (but has the same closure).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.