Abstract

In this paper, using an optimize-then-discretize approach, we address the numerical solution of two Fraction Partial Differential Equation constrained optimization problems: the Fractional Advection Dispersion Equation (FADE) and the two-dimensional semilinear Riesz Space Fractional Diffusion equation. Both a theoretical and experimental analysis of the problem is carried out. The algorithmic framework is based on the L-BFGS method coupled with a Krylov subspace solver. A suitable preconditioning strategy by approximate inverses is taken into account. Graphics Processing Unit (GPU) accelerator is used in the construction of the preconditioners. The numerical experiments are performed with benchmarked software/libraries enforcing the reproducibility of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.