Abstract

We consider a fractional Ornstein-Uhlenbeck process involving a stochastic forcing term in the drift, as a solution of a linear stochastic differential equation driven by a fractional Brownian motion. For such process we specify mean and covariance functions, concentrating on their asymptotic behavior. This gives us a sort of short- or long-range dependence, under specified hypotheses on the covariance of the forcing process. Applications of this process in neuronal modeling are discussed, providing an example of a stochastic forcing term as a linear combination of Heaviside functions with random center. Simulation algorithms for the sample path of this process are finally given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call