Abstract

Recent studies have demonstrated the benefits of using fractional derivatives to simulate a blood pressure profile. In this work we propose to combine a one-dimensional model of coronary blood flow with fractional-order Windkessel boundary conditions. This allows us to obtain a greater variety of blood pressure profiles for better model personalization An algorithm of parameter identification is described, which is used to fit the measured mean value of arterial pressure and estimate the fractional flow reserve (FFR) for a given patient. The proposed framework is used to investigate sensitivity of mean blood pressure and fractional flow reserve to fractional order. We demonstrate that the fractional derivative order significantly affects the fractional flow reserve (FFR), which is used as an indicator of stenosis significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.