Abstract

In this article, the generalized thermoelastic theory with fractional derivative is presented to estimate the variation of temperature, the components of stress, the components of displacement and the changes in volume fraction field in two-dimensional porous media. Easily, the exact solutions in the Laplace domain are obtained. By using Laplace and Fourier transformations with the eigenvalues method, the physical quantities are obtained analytically. The numerical results for all the physical quantities considered are implemented and presented graphically. The results display that the present model with the fractional derivative is reduced to the Lord and Shulman (LS) and the classical dynamical coupled (CT) theories when the fractional parameter is equivalent to one and the delay time is equal to zero and respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.