Abstract

The model of fractional time-derivative of generalized magneto–thermo–viscoelasticity equations for isotropic media in the presence of a constant magnetic field is considered. Some essential theorems on the linear coupled and generalized theories of thermo-viscoelasticity can be easily obtained. This model is applied to solve a problem of an infinite body with a cylindrical cavity in the presence of an axial uniform magnetic field. The boundary of the cavity is subjected to a combination of thermal and mechanical shock acting for a finite period of time. Laplace transform techniques are used to derive the solution in the Laplace transform domain. The inversion process is carried out using a numerical method based on Fourier series expansions. Numerical computations for the temperature, the displacement and the stress distributions as well as for the induced magnetic and electric fields are carried out and represented graphically. Comparisons are made with the results predicted by the generalizations, Lord–Shulman theory, and Green–Lindsay theory as well as to the coupled theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call