Abstract

Present-day mechanical manipulators reveal limited performances when compared with the human arm. Joint-driven manipulators are sub-optimal due to the high actuator requirements imposed by the transients of the operational space tasks. Muscle-actuated arms are superior because the anatomic structures adapt the task requirements to the driving linear actuators. However, the advantages of muscle actuation are difficult to unravel using the standard integer-order kinematics based on the integer derivatives, namely the positions, velocities and accelerations. This paper investigates the human arm and evaluates the influence of biomechanics upon the driving actuators by means of a new method of kinematic analysis and visualisation. The proposed method uses the tools of fractional calculus for computing the continuous propagation of the signals between positions and accelerations. The behaviour of the variables is compared in the joint and muscle spaces, using both the kinematics in the time domain and the describing function method. In this line of thought, the classical integer-order kinematics, with three discrete levels of visualisation, is generalised to a continuous description represented by the fractional-order kinematics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.