Abstract

The stability of the teleoperated cyber–physical system with model uncertainty, external disturbance, and actuator fault is addressed in this study by using a suitable fractional-order sliding mode control (SMC) strategy. First, the sliding surface is designed to ensure the better tracking performance of the system. Second, the suggested control method combines SMC with an adaptive strategy to ensure that the system is stable in finite time. Third, neural network (NN) and fuzzy logic system (FLS) are used to estimate the model uncertainty, time-varying delay, external disturbance and unknown coefficient matrices of sliding mode surface, respectively. Finally, the advantages of the proposed control scheme are confirmed by the simulation example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call