Abstract

Media-adventitia (MA) border delineates the outer appearance of arterial wall in intravascular ultrasound (IVUS) image. The detection of MA border is a challenging topic due to many difficulties such as complicated intravascular structures, intrinsic artifacts and image noises. We propose a classification-based MA border detection method with an embedded feature selection technique. The feature selection technique is based on Fractional-order Darwinian particle swarm optimization (FODPSO) algorithm. By employing feature selection, 293-dimension features including multi-scale features, gray-scale features and morphological feature are reducing to 37-dimension. The border detection method with feature selection is tested on a public dataset extracted from in-vivo pullbacks of human coronary arteries, which contains 77 IVUS images. Three indicators, Jaccard (JACC), Hausdorff Distance (HD) and Percentage of Area Difference (PAD), are measured for quantitative evaluation. Detection with 293-dimension features obtains JACC 0.79, HD 1.41 and PAD 0.16, while detection with 37-dimension features obtains JACC 0.83, HD 1.27 and PAD 0.12, indicating that the FODPSO-based feature selection method improves MA border detection by JACC 0.04, HD 0.14 and PAD 0.04. Furthermore, the proposed border detection method acquires better performances compared with two other automatic methods conducted on the same dataset available in literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.