Abstract
Fractional differential and integral operators, Dirichlet averages, and splines of complex order are three seemingly distinct mathematical subject areas addressing different questions and employing different methodologies. It is the purpose of this paper to show that there are deep and interesting relationships between these three areas. First a brief introduction to fractional differential and integral operators defined on Lizorkin spaces is presented and some of their main properties exhibited. This particular approach has the advantage that several definitions of fractional derivatives and integrals coincide. We then introduce Dirichlet averages and extend their definition to an infinite-dimensional setting that is needed to exhibit the relationships to splines of complex order. Finally, we focus on splines of complex order and, in particular, on cardinal B-splines of complex order. The fundamental connections to fractional derivatives and integrals as well as Dirichlet averages are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.