Abstract

Tools of fractional calculus including fractional operators and transforms have been utilized in physics by many authors (Hilfer, 2000). Fractional operators defined as fractionalizations of some commonly used operators allow describing of intermediate states. For example, fractional derivatives and integrals (Oldham & Spanier, 1974; Samko et al., 1993) are generalizations of derivative and integral. Fractional curl operator defined in (Engheta, 1998) is a fractionalized analogue of conventional curl operator used in many equations of mathematical physics. A fractionalized operator generalizes the original operator. The idea to use fractional operators in electromagnetic problems was formulated by N. Engheta (Engheta, 2000) and named “fractional paradigm in electromagnetic theory”. Our purpose is to find possible applications of the use of fractional operators in the problems of electromagnetic wave diffraction. In this paper two-dimensional problems of diffraction by infinitely thin surfaces are considered: a strip, a half-plane and a strip resonator (Fig.1). Assume that an incident field is an E-polarized plane wave, described by the function

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call