Abstract

In this paper, for synchronizing two actual nonidentical fractional‐order hyperchaotic systems disturbed by model uncertainty and external disturbance, the fractional matrix and inverse matrix projective synchronization methods are presented and the methods' correctness and effectiveness are proved. Especially, under certain degenerative conditions, the methods are reduced to study the complete synchronization, antisynchronization, projective (or inverse projective) synchronization, modified (or modified inverse) projective synchronization, and stabilization problem for the disturbed (or undisturbed) fractional‐order hyperchaotic systems. In addition, as the fractional matrix and inverse matrix projective synchronization methods' applications, the fractional‐order hyperchaotic Chen and Rabinovich systems disturbed by model uncertainty and external disturbance are constructed, and the matrix and inverse matrix projective synchronizations between the two disturbed systems are achieved, respectively. This work constructs a basic theoretical framework of fractional matrix and inverse matrix projective synchronization methods and provides a general method for synchronizing the actual disturbed fractional‐order hyperchaotic systems that are related to science and engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.