Abstract

Abstract In this study, we present a model which represents the interaction of financial companies in their network. Since the long time series have a global memory effect, we present our model in the terms of fractional integro-differential equations. This model characterize the behavior of the complex network where vertices are the financial companies operating in XU100 and edges are formed by distance based on Pearson correlation coefficient. This behavior can be seen as the financial interactions of the agents. Hence, we first cluster the complex network in the terms of high modularity of the edges. Then, we give a system of fractional integro-differential equation model with two parameters. First parameter defines the strength of the connection of agents to their cluster. Hence, to estimate this parameter we use vibrational potential of each agent in their cluster. The second parameter in our model defines how much agents in a cluster affect each other. Therefore, we use the disparity measure of PMFGs of each cluster to estimate second parameter. To solve model numerically we use an efficient algorithmic decomposition method and concluded that those solutions are consistent with real world data. The model and the solutions we present with fractional derivative show that the real data of Borsa Istanbul Stock Exchange Market always seek for an equilibrium state.

Highlights

  • Complex systems are mathematical structures involving interacting agents at different levels

  • The rest of the paper is organized as follow: In Section 2, we present the preliminaries about to fractional calculus and graph theoretical concepts that we use throughout the paper

  • In order to study the proposed model in the Borsa Istanbul Stock Exchange, we first apply our algorithm to the data set to obtain stock market network

Read more

Summary

Introduction

Complex systems are mathematical structures involving interacting agents at different levels. These interactions emerge from the financial, chemical, social, and computer system entities. In the realm of computational finance, a financial market can be viewed as interacting group of boundedly-rational agents and its fluctuation represent strong nonlinearity and persistent memory. The mathematical tools such as network and graph theories can be used to understand and analyze these systems [1, 2]. There are several models expressed in the terms of differential equations in biological complex systems. The virus models that classify individuals and ISSN 2444-8656 doi:10.2478/AMNS.2020.1.00030

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call