Abstract
The fractional integrator is certainly the key operator of fractional calculus, because of its fundamental applications in Fractional Differential Equation simulation and for the definition of fractional initial conditions. Fractional integration is defined by the classical Riemman-Liouville integral, derived from repeated integration. Three approaches commonly used to define the fractional integration operator (frequency method, frequency distributed model, Grunwald derivative) are analysed and compared in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.