Abstract
In this paper, we introduce the fractional integral operator T of degree α of order m with respect to a dilation A for 0 < α < 1 and \(m \in {\mathbb{N}}\). First we establish the Hardy-Littlewood-Sobolev inequalities for T on anisotropic Hardy spaces associated with dilation A, which show that T is bounded from H p to H q , or from H p to L q , where 0 < p ≤ 1/(1 + α) and 1/q = 1/p − α. Then we give anisotropic Hardy spaces estimates for a class of multilinear operators formed by fractional integrals or Calderon-Zygmund singular integrals. Finally, we apply the above results to give the boundedness of the commutators of T and a BMO function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.