Abstract
An overview is given to a new approach for obtaining generalized Fourier transforms in the context of hypercomplex analysis (or Clifford analysis). These transforms are applicable to higher-dimensional signals with several components and are different from the classical Fourier transform in that they mix the components of the signal. Subsequently, attention is focused on the special case of the so-called Clifford-Fourier transform where recently a lot of progress has been made. A fractional version of this transform is introduced and a series expansion for its integral kernel is obtained. For the case of dimension 2, also an explicit expression for the kernel is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.