Abstract

The aim of the present article is to design a robust fractional-order (FO) finite-time (FnT) control able to tackle Hölder disturbances of second-order nonlinear systems. First, a novel sliding manifold with Arc-Tangent function is suggested for second nonlinear systems. It has been proven that the system states globally converge to the origin in FnT using the proposed sliding mode variable. To ensure a FnT stability of the sliding variable, a robust control is developed. By using fractional operators, a uniformly continuous control law is designed to tackle Hölder disturbances. Furthermore, the suggested approach is shown to be resistant to matched Hölder disturbances and uncertainties that are continuous but not necessarily differentiable. Moreover, the FnT stability of quadrotors using the proposed control, that is our second result. The quadrotor simulations analysis demonstrates the practicality of the proposed FnT controller in the presence of Hölder disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.