Abstract

ABSTRACTA fault-tolerant control scheme is proposed for a class of commensurate-order fractional nonlinear systems that consists of two fractional-order observers (hybrid scheme). The diagnosis of the faults is performed by means of a model-free fractional proportional integral reduced-order observer that uses the fractional algebraic observability property. A fractional dynamical controller obtained in a natural way from the dynamics of a fractional high-gain observer is designed, which is constructed from a fractional generalised observability canonical form; the controller performs output tracking, thus eliminating the effects of the faults. A stability analysis on the overall system demonstrates that the origin is Mittag–Leffler stable. The proposed methodology is assessed by means of simulations on the fractional models of the Van der Pol oscillator and a DC motor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call