Abstract

PurposeThe purpose of this paper is to find a simpler model for the reactance components in the high-frequency range on the premise of ensuring the accuracy.Design/methodology/approachIn this paper, based on the fractional calculus theory and the traditional integer-order model, a reactance model suitable for high frequency is constructed, and the mutation cross differential evolution algorithm is used to identify the parameters in the model.FindingsBy comparing the integer-order model, high-frequency fractional-order model and the actual impedance characteristic curve of inductance and capacitance, it is verified that the proposed model can more accurately reflect the high-frequency characteristics of inductance and capacitance. The simulation and experimental results show that the oscillator constructed based on the proposed model can analyze the frequency and output waveform of the oscillator more accurately.Originality/valueThe model proposed in this paper has a simple structure and contains only two parameters to be identified. At the same time, the model has high precision. The fitting errors of impedance curve and phase-frequency characteristic curve are less than 5%. Therefore, the proposed model is helpful to improve the simplicity and accuracy of circuit system analysis and design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.