Abstract
We present the fractional wave equation in a conducting material. We used a Maxwell’s equations with the assumptions that the charge density and current density J were zero, and that the permeability and permittivity were constants. The fractional wave equation will be examined separately; with fractional spatial derivative and fractional temporal derivative, finally, consider a Dirichlet conditions, the Fourier method was used to find the full solution of the fractional equation in analytic way. Two auxiliary parameters and are introduced; these parameters characterize consistently the existence of the fractional space-time derivatives into the fractional wave equation. A physical relation between these parameters is reported. The fractional derivative of Caputo type is considered and the corresponding solutions are given in terms of the Mittag-Leffler function show fractal space-time geometry different from the classical integer-order model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.