Abstract

Field equations with time and coordinate derivatives of noninteger order are derived from a stationary action principle for the cases of power-law memory function and long-range interaction in systems. The method is applied to obtain a fractional generalization of the Ginzburg–Landau and nonlinear Schrödinger equations. As another example, dynamical equations for particle chains with power-law interaction and memory are considered in the continuous limit. The obtained fractional equations can be applied to complex media with/without random parameters or processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.