Abstract

A dynamical system is a particle or set of particles whose state changes over time. The dynamics of the system is described by a set of differential equations. If the derivatives involved are of non-integer order, we obtain a fractional dynamical system. In this paper, we considered a fractional dynamical system with the Caputo fractional derivative. We collocated the fractional differential problem in dyadic nodes and used refinable functions as approximation functions to achieve a good degree of freedom in the choice of the regularity. The collocation method stands out as a particularly useful and attractive tool for solving fractional differential problems of various forms. A numerical result is presented to show that the numerical solution fits the analytical one very well. We collocated the fractional differential problem in dyadic nodes using refinable functions as approximation functions to achieve a good degree of freedom in the choice of regularity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call